Study of TEC fluctuation via stochastic models and Bayesian inversion
نویسندگان
چکیده
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملBayesian Estimation and Prediction of Stochastic Volatility Models via INLA
In this paper we assess Bayesian estimation and prediction using integrated Laplace approximation (INLA) on a stochastic volatility model. This was performed through a Monte Carlo study with 1000 simulated time series. To evaluate the estimation method, two criteria were considered: the bias and square root of the mean square error (smse). The criteria used for prediction are the one step ahead...
متن کاملjoint bayesian stochastic inversion of well logs and seismic data for volumetric uncertainty analysis
here in, an application of a new seismic inversion algorithm in one of iran’s oilfields is described. stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. this method integrates information from different data sources with different scales, as prior informat...
متن کاملConstruction of Bayesian Deformable Models via Stochastic Approximation Algorithm: a Convergence Study
Abstract. The problem of the definition and the estimation of generative models based on deformable templates from raw data is of particular importance for modeling non-aligned data affected by various types of geometrical variability. This is especially true in shape modeling in the computer vision community or in probabilistic atlas building in Computational Anatomy. A first coherent statisti...
متن کاملBayesian Learning via Stochastic Dynamics
The attempt to find a single "optimal" weight vector in conventional network training can lead to overfitting and poor generalization. Bayesian methods avoid this, without the need for a validation set, by averaging the outputs of many networks with weights sampled from the posterior distribution given the training data. This sample can be obtained by simulating a stochastic dynamical system th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Radio Science
سال: 2016
ISSN: 0048-6604
DOI: 10.1002/2016rs005959